Detection of Moving Object in Dynamic Background Using Gaussian Max-Pooling and Segmentation Constrained RPCA
نویسندگان
چکیده
Due to its efficiency and stability, Robust Principal Component Analysis (RPCA) has been emerging as a promising tool for moving object detection. Unfortunately, existing RPCA based methods assume static or quasi-static background, and thereby they may have trouble in coping with the background scenes that exhibit a persistent dynamic behavior. In this work, we shall introduce two techniques to fill in the gap. First, instead of using the raw pixel-value as features that are brittle in the presence of dynamic background, we devise a so-called Gaussian max-pooling operator to estimate a “stable-value” for each pixel. Those stable-values are robust to various background changes and can therefore distinguish effectively the foreground objects from the background. Then, to obtain more accurate results, we further propose a Segmentation Constrained RPCA (SC-RPCA) model, which incorporates the temporal and spatial continuity in images into RPCA. The inference process of SC-RPCA is a group sparsity constrained nuclear norm minimization problem, which is convex and easy to solve. Experimental results on seven videos from the CDCNET 2014 database show the superior performance of the proposed method.
منابع مشابه
Moving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملComparative Study of Statistical background Modeling and Subtraction
Background subtraction methods are widely exploited for moving object detection in videos in many computer vision applications, such as traffic monitoring, human motion capture and video surveillance. The two most distinguishing and challenging aspects of such approaches in this application field are how to build correctly and efficiently the background model and how to prevent the false detect...
متن کاملOR-PCA with MRF for Robust Foreground Detection in Highly Dynamic Backgrounds
Accurate and efficient foreground detection is an important task in video surveillance system. The task becomes more critical when the background scene shows more variations, such as water surface, waving trees, varying illumination conditions, etc. Recently, Robust Principal Components Analysis (RPCA) shows a very nice framework for moving object detection. The background sequence is modeled b...
متن کاملStatistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.00657 شماره
صفحات -
تاریخ انتشار 2017